Analysis of the Precision of Variable Flip Angle T1 Mapping with Emphasis on the Noise Propagated from RF Transmit Field Maps

نویسندگان

  • Yoojin Lee
  • Martina F. Callaghan
  • Zoltan Nagy
چکیده

In magnetic resonance imaging, precise measurements of longitudinal relaxation time (T1) is crucial to acquire useful information that is applicable to numerous clinical and neuroscience applications. In this work, we investigated the precision of T1 relaxation time as measured using the variable flip angle method with emphasis on the noise propagated from radiofrequency transmit field ([Formula: see text]) measurements. The analytical solution for T1 precision was derived by standard error propagation methods incorporating the noise from the three input sources: two spoiled gradient echo (SPGR) images and a [Formula: see text] map. Repeated in vivo experiments were performed to estimate the total variance in T1 maps and we compared these experimentally obtained values with the theoretical predictions to validate the established theoretical framework. Both the analytical and experimental results showed that variance in the [Formula: see text] map propagated comparable noise levels into the T1 maps as either of the two SPGR images. Improving precision of the [Formula: see text] measurements significantly reduced the variance in the estimated T1 map. The variance estimated from the repeatedly measured in vivoT1 maps agreed well with the theoretically-calculated variance in T1 estimates, thus validating the analytical framework for realistic in vivo experiments. We concluded that for T1 mapping experiments, the error propagated from the [Formula: see text] map must be considered. Optimizing the SPGR signals while neglecting to improve the precision of the [Formula: see text] map may result in grossly overestimating the precision of the estimated T1 values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction of Rf Inhomogeneities in Flash-based T1 Mapping Using Unified Segmentation

Introduction: Quantitative T1 mapping based on 3D FLASH acquisitions with variable excitation flip angles (VFA) is fast and robust (1, 2). However, high accuracy can only be achieved when the local flip angle is known precisely (1). At higher static magnetic fields local flip angles may deviate considerably from the nominal flip angle due to inhomogeneities of the RF transmit/B1 field (3, 4). T...

متن کامل

Accurate and Efficient Mapping of Flip Angle and T1 using Simultaneous Actual Flip Angle - Variable Flip Angle Imaging (AFI-T1)

Introduction: The knowledge of flip angle values is essential for accurate modeling in many quantitative MRI techniques. Recently, Actual Flip Angle Imaging (AFI) was proposed to account for multiple sources of flip angle variations such as transmit field inhomogeneity, B0 variations, slab profile, and excitation pulse effects [1]. AFI was successfully applied to yield system-independent T1 rel...

متن کامل

Signal to Noise Ratio Analysis of Bloch-Siegert B1 Mapping

Introduction: B1 mapping is important in a variety of new MR applications, including the design of RF pulses in parallel transmit systems and flip angle calibration for T1 mapping. The Bloch-Siegert (BS) B1 mapping method has been recently introduced as a fast, accurate and robust technique for B1 mapping [1]. In order to compare the quality of B1 maps acquired with the BS method to other metho...

متن کامل

Mapping of low flip angles in magnetic resonance.

Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for...

متن کامل

Assessment of the Characteristics of MRI Coils in Terms of RF Non-Homogeneity Using Routine Spin Echo Sequences

Introduction: One of the major causes of image non-uniformity in MRI is due to the existence of  non-homogeneity in RF receive and transmit. This can be the most effective source of error in  quantitative  studies  in  MRI  imaging.  Part  of  this  non-homogeneity  demonstrates  the  characteristics of RF coil and part of it is due to the interaction of RF field with the material being  imaged...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017